1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
//! # [Day 19: Medicine for Rudolph](https://adventofcode.com/2015/day/19)
//!
//! Rudolph the Red-Nosed Reindeer is sick! His nose isn't shining very brightly,
//! and he needs medicine.
//!
//! Red-Nosed Reindeer biology isn't similar to regular reindeer biology; Rudolph is going to
//! need custom-made medicine. Unfortunately, Red-Nosed Reindeer chemistry isn't similar to regular
//! reindeer chemistry, either.
//!
//! The North Pole is equipped with a Red-Nosed Reindeer nuclear fusion/fission plant, capable of
//! constructing any Red-Nosed Reindeer molecule you need. It works by starting with some input
//! molecule and then doing a series of replacements, one per step, until it has the right molecule.
//!
//! However, the machine has to be calibrated before it can be used. Calibration involves
//! determining the number of molecules that can be generated in one step from a given
//! starting point.
//!
//! For example, imagine a simpler machine that supports only the following replacements:
//!
//! ```plain
//! H => HO
//! H => OH
//! O => HH
//!
//! ```
//!
//! Given the replacements above and starting with `HOH`, the following molecules
//! could be generated:
//!
//! - `HOOH` (via `H => HO` on the first `H`).
//! - `HOHO` (via `H => HO` on the second `H`).
//! - `OHOH` (via `H => OH` on the first `H`).
//! - `HOOH` (via `H => OH` on the second `H`).
//! - `HHHH` (via `O => HH`).
//!
//! So, in the example above, there are `4` distinct molecules (not five, because `HOOH`
//! appears twice) after one replacement from `HOH`. Santa's favorite molecule, `HOHOHO`,
//! can become `7` distinct molecules (over nine replacements: six from `H`, and three from `O`).
//!
//! The machine replaces without regard for the surrounding characters. For example,
//! given the string `H2O`, the transition `H => OO` would result in `OO2O`.
//!
//! Your puzzle input describes all of the possible replacements and, at the bottom, the medicine
//! molecule for which you need to calibrate the machine. **How many distinct molecules can be
//! created after all the different ways you can do one replacement on the medicine molecule?**
//!
//! # Part Two
//!
//! Now that the machine is calibrated, you're ready to begin molecule fabrication.
//!
//! Molecule fabrication always begins with just a single electron, `e`, and applying
//! replacements one at a time, just like the ones during calibration.
//!
//! For example, suppose you have the following replacements:
//!
//! ```plain
//! e => H
//! e => O
//! H => HO
//! H => OH
//! O => HH
//! ```
//!
//! If you'd like to make `HOH`, you start with `e`, and then make the following replacements:
//!
//! - `e => O` to get `O`
//! - `O => HH` to get `HH`
//! - `H => OH` (on the second `H`) to get `HOH`
//!
//! So, you could make `HOH` after `3` steps. Santa's favorite molecule, `HOHOHO`,
//! can be made in `6` steps.
//!
//! **How long will it take to make the medicine?** Given the available replacements and the medicine
//! molecule in your puzzle input, what is the fewest number of steps to go from `e` to the
//! medicine molecule?
use std::collections::HashSet;
type Replacements = Vec<(String, String)>;
#[aoc_generator(day19)]
fn parse_input(input: &str) -> (Replacements, String) {
let mut puzzle = String::new();
let delimiter = " => ";
let mut entries: Replacements = Vec::new();
for line in input.lines() {
if line.is_empty() {
continue;
}
if line.contains(delimiter) {
let parts: Vec<&str> = line.split(delimiter).collect();
entries.push((parts[0].to_owned(), parts[1].to_owned()));
} else {
puzzle = line.into();
}
}
entries.sort_by(|&(_, ref a), &(_, ref b)| a.len().cmp(&b.len()));
(entries, puzzle)
}
/// Part 1: How many distinct molecules can be
/// created after all the different ways you can do one replacement on the medicine molecule?
#[aoc(day19, part1)]
fn part1(input: &(Replacements, String)) -> usize {
let (replacements, puzzle) = input;
let vals = apply(replacements, puzzle);
vals.len()
}
fn apply(replacements: &Replacements, puzzle: &str) -> HashSet<String> {
let mut mols: HashSet<String> = HashSet::new();
for (from, to) in replacements {
for res in variants(puzzle, from, to) {
mols.insert(res);
}
}
mols
}
fn variants(puzzle: &str, from: &str, to: &str) -> HashSet<String> {
HashSet::from_iter(
puzzle
.single_replacements(from, to)
.iter()
.map(|s| s.to_owned()),
)
}
/// Part 2: How long will it take to make the medicine? Given the available replacements and the
/// medicine molecule in your puzzle input, what is the fewest number of steps to go from `e` to
/// the medicine molecule?
// #[aoc(day19, part2)]
// fn part2(input: &(Replacements, String)) -> usize {
// let (replacements, puzzle) = input;
// find_production(replacements, puzzle, 0).unwrap()
// }
// fn find_production(replacements: &Replacements, input: &str, depth: usize) -> Option<usize> {
// if input == "e" {
// return Some(depth);
// }
// for next_step in replacements
// .iter()
// .flat_map(|&(ref from, ref to)| input.single_replacements(to, from).into_iter())
// .unique()
// {
// if let Some(count) = find_production(replacements, &next_step, depth + 1) {
// return Some(count);
// }
// }
// None
// }
trait SingleReplacements {
// like std::str::replace but returning a Vec<String> with one replacement in each
fn single_replacements(&self, from: &str, to: &str) -> Vec<String>;
}
impl<'a> SingleReplacements for &'a str {
fn single_replacements(&self, from: &str, to: &str) -> Vec<String> {
let mut results = Vec::new();
for (start, part) in self.match_indices(from) {
let mut string = String::new();
string.push_str(self.get(0..start).unwrap());
string.push_str(to);
string.push_str(self.get(start + part.len()..self.len()).unwrap());
results.push(string);
}
results
}
}
#[cfg(test)]
mod tests {
use super::*;
const EXAMPLE_1: &str = "H => HO
H => OH
O => HH";
// const EXAMPLE_2: &str = "e => H
// e => O
// H => HO
// H => OH
// O => HH";
#[test]
fn part1_examples() {
let (replacements, _) = parse_input(EXAMPLE_1);
// So, in the example above, there are `4` distinct molecules
let molecules = apply(&replacements, "HOH");
assert_eq!(4, molecules.len());
assert_eq!(
HashSet::from_iter(vec![
"HOOH".to_string(),
"HOHO".to_string(),
"OHOH".to_string(),
"HHHH".to_string()
]),
molecules
);
}
// #[test]
// fn part2_examples() {
// let (replacements, _) = parse_input(EXAMPLE_2);
// // So, you could make `HOH` after `3` steps.
// assert_eq!(3, find_production(&replacements, "HOH", 0).unwrap());
// // Santa's favorite molecule, `HOHOHO`, can be made in `6` steps.
// assert_eq!(6, find_production(&replacements, "HOHOHO", 0).unwrap());
// }
}